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ABSTRACT 

This report is a continuation of a study of the effects of internal 
heat transfer on the temperature of hollow spacecraft and the require- 
ments for thermal modeling.    Considered herein is the effect of in- 
ternal heat transfer by radiation on the temperature distribution.    The 
equation governing the heat transfer of a spherical shell exposed to 
parallel radiation is derived; conduction and radiation are considered. 
The general equation is simplified by assuming steady state,  and a 
numerical method is given to solve the steady state equation.    A com- 
puter program is described which employs the method.    Solutions of 
the steady state equation are graphically presented and discussed. 
The requirements for temperature preservation in thermal modeling 
are derived.    The possibility of thermal modeling without temperature 
preservation is discussed.    It is observed that for an inside emissivity 
to outside emissivity ratio greater than one, the requirement for dupli- 
cation of the other dimensionless ratio can be relaxed. 
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NOMENCLATURE 

A Conducting area 

AP Projected area 

A^ Radiating area 

a Radius of sphere 

b Shell thickness 

c Specific heat capacity 

D Density 

E Ratio of emissivities 

F(x) Parallel radiation function 

F00/ Form factor from area at 0 to area at 0' 

f(0) Parallel radiation function 

GQ_Q/ Form-surface factor from area at 0 to area at 0' 

H(x) Step function to limit F(x) 

h(0) Step function to limit f(0) 

k Thermal conductivity 

N Dimensionless ratio 

Np Dimensionless ratio 

Ns Dimensionless ratio 

p1 Rate of heat transfer into sector by conduction 

PQ Rate of heat transfer out of sector by conduction 

PQ Rate of heat transfer into sector from source 

p4 Rate of heat transfer out of sector by radiation 

p= Rate of heat transfer into sector by radiation 

p. Net rate of heat transfer into sector 

p (r) Parallel radiation function 

q_ Area average of p„ 
fa ö 

r Distance from axis of symmetry 

T Temperature 

T Arbitrary temperature 

vi 
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t Time 

*m Arbitrary time 

V Volume 

X Cosine of 0 

Ax Step size 

y Dimensionless time 

z Dimensionless temperature 

zi Lower bound of Z(-l) 

Zo Trial value of Z(-l) 

Zu Upper bound of Z(-l) 

ai Inside absorptivity 

<*s Absorptivity of radiation from source 

ei Inside emissivity 

eo Outside emissivity 

0 Angle from axis of symmetry 

pi Inside reflectivity 

a Stefan-Boltzmann constant 

Vll 
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SECTION I 
INTRODUCTION 

This report is a continuation of a study of the effects of internal 
heat transfer on the temperature of hollow spacecraft and the require- 
ments for thermal modeling.    Considered herein is the effect of inter- 
nal radiative heat transfer on the temperature distribution. 

In Ref.   1, the effect of internal convection on the temperature of 
a spacecraft model of arbitrary shape,  subjected to parallel radiation, 
was considered, and the transient temperatures were calculated.    With 
the aid of numerical results, the conditions under which convection can 
be neglected were determined.   Also, thermal modeling rules were 
derived for testing scale models.    Thermal modeling is a valuable tech- 
nique in ground testing of spacecraft.    Several aspects of thermal model 
testing in space simulation chambers are discussed in Ref. 2. 

In this report, the geometry is restricted to a spherical shell, and 
solutions are obtained for the steady state case.    The spherical shell is 
subjected to parallel radiation which is considered uniform for the cal- 
culations presented herein; however, the equations derived and the 
numerical method allow axially symmetric nonuniformities.    These 
somewhat arbitrary restrictions were imposed so that relatively simple 
calculations resulted,  which nevertheless bring out features of a more 
general nature.    By carrying out selected calculations of this type, it 
is hoped that better insight can be obtained concerning the importance 
of various parameters to thermal testing in space simulation chambers. 

SECTION II 
MATHEMATICAL ANALYSES 

2.1  GENERAL EQUATIONS 

The system to be considered is shown in Fig.   1 with vacuum inside 
and outside of the sphere.    It is assumed that the shell thickness, b, 
is small enough to disallow any temperature gradient in the radial direc- 
tion.   It is also assumed that the inside of the sphere emits and reflects 
diffusely.    The parallel radiation,  ps, is allowed to be a function of r. 
This may be useful at a later time in investigating the effects of non- 
uniformities of solar simulators. 
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Ps(r) 

► u 

Fig. 1   Geometry and Nomenclature 
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The general equation governing the system can be obtained by per- 
forming a heat balance on the sector of the sphere between 6 and 6 + dö 
and the equation 

d,, in   =   cDdV^I (1) 

IS 
The rate of heat transfer into the sector at 0 by conduction (Fig. 1) 

p,  = -kAk J *I 
' a de 

The rate of heat transfer out of the sector by conduction at 8 + d0 is 

?1   ~     kA    a   W 
9+de 

a   (30 a   do 
l*+d« 

(Ak S> 
Thus the total rate of heat transfer into the sector by conduction is 

Let qg be the average over the projected area of the sphere of 
ps; then 

<Is  =   "^2 J    Ps(r) 2/7 rdr 

or 

Is  =   — I    r ps(r) dr 
a  «»o 

Now define the dimensionless functions 

fW   =  ^-Ps(asinö) 

(3) 

(4) 

and 

hW) J1 

°      f 

0 < 6 < — 
2 (5) 

<  0 <  n 

The rate of heat transfer into the sector from the parallel radiation 
source is then 

dp3  =   as Ps(r) dAp 

or 
dp3  =  asqsf(ö)h(ö)dA" (6) 
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The rate of heat transfer emitted out of the sector is given by 

dp4 = (<i - «o)«rT*dA» (7) 

The rate of heat transfer into the sector from radiation inside the 
sphere is given by 

dp,   = a; f   fiffT4(0OdG0'~0dA0' 
0 

where the integration is of the area at 6'. 

(8) 

or 

and 

The different areas are given by 

Ak  = 2irab sin0 (9) 

dAP  =  n a2 d (sin2 8) 

dAP   =   2»7aa sin 0 cos 0 d0 (10) 

The volume is 

or 

dAR   =   2TT a2 sin 0 dö 

dV =  bdA' 

(ID 

dV  =  2rr a2bsin0d0 (12) 

It is proved in Appendix I that 

dG.e'_0   =  -±- sin 0 dö (13) 

A substitution in Eq.  (1) of dp.    = (pj - pg) + dp3 - dp4 + dp5 
results in 

2mb-*-[~cos0^+   sinÖ  |£ do 
a   I do OV _ 

+   27ra2asqs f(0) h(0) sin 6 cos 0 dö 

- 2na2 («i 4- e0) ffT4 sin B dö 

+  ai f; a /_!_ sin 0 dö]2ffa2  f     T*(0') sin 0'd0' 

=  2ffa2 b c D sin 0 do -f1" 
at 
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Dividing by ?rsin0d0 for (K9<*7r this becomes 

2h k 

I»2 (f, 

x9 S - SH ^ 2t,i Qsis«flh(« cos e 
(70 (70 J 

T4(ö')sin e'de' 
(14) 

=   lV b c 1) dT 

Define the dimensionle. 3S variables 

Z = T 

and 
y   = t 

(15) 

(16) 

where, for the present, Tm and tm are, respectively, some arbitrary 
temperature and some arbitrary time.    Equation (14) is obtained in 
dimensionless form by using Eqs.   (15) and (16) and dividing through by 
2bkTm.     The result is 

o 

_ U c p\ dz 
UtJ   dy 

This introduces three dimensionless quantities which will be defined 

(18) Ne   - 
a2a9qs 

bkTm 

NR  = 
a21 o W "C 

bk 

Nc  = 
a2cD 

ktm 

(19) 
and 

(20) 

These quantities may be used as a measure of the effects of an 
external energy source, external radiation, and the heat capacity, 
respectively,  as compared with the heat transfer by conduction.    Also 
define 

E = ef- (21) 
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In these terms,   Eq.   (17) becomes 

a2/ . a dv. 
Otr dv 

![JE:J     Z4(Ö')sinÖ'flö' -   (L  +   K)Z4 ,  . (22) 

This equation can be written in a different form by a change of 
variable 

From the equation 

is obtained 

x  =  cos 6 

dl_dzi*= _e[n9 67. 
d&      dx   id 

cot e % = - cos e |z = - x |z 
CP OX <?x 

Also 

<9x2 d0\ d*) 

_   cosöaZ+   sin20  ^- 

- x 22 +  (1 - x') ?'■ 

Defining 

and 

+  . 
dx dx~ 

F(x) =  f (cos- xl (24) 

(\ 0 < x  <  I 

H(x) =< (25) 

(0        -1  < x  < 0 

Thus Eq.  (22) becomes 

(1 - x2) jff - 2x 4-7' + N. F(x) II(x) x 
Ox Os 

IMKUET Z4(xOdx'-  (1  + E)   Z« (26) 

lNc   dv 

Either Eq.  (22) or Eq.  (26) describes the temperature of the system 
as a function of position and time.    Given an initial temperature distribu- 
tion, the numerical solution of these equations could be obtained. 
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2.2   STEADY STATE EQUATIONS 

If steady state condition is assumed, a simplification of Eqs. (22) 
and (26) can be made. Performing a heat balance on the whole sphere 
at steady state gives 

rra2 as qs (27) 

or 

r<0<7T4dAR 

0 

2n&2 (0 at   1* sin 6 Ad =  wa2 as q 

from which is obtained 

J T sir. ede -~ a_* q» 
or 

(28) 

2f0 a 

//,« sin 6 dö =     gg ''» 
2«oO   'm 

(29) 

If Tm is defined as the temperature such that if the sphere was isother- 
mal, it would radiate the same power; then 

ina'coa'V^   =   /   e0 a T4 dAB 

/ 

=  na   as qs 

or 

T". =  //^ (30) 

With this definition, Eq.  (29) becomes 

I   Z4 sin Öd© =2 (31> 

Thus 

VAx =  2 (32) S> 
Also, for steady state conditions a relation between Ns and NR can be 
obtained.    By Eq.   (18) 

;     _   "2asqBT^ 
S   = b   k K 

a2«s qs'''m 

bK 

4aaf0  a Tm 

bk 
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or 
Ns  =  4N» (33) 

Using these substitutions and noting that for steady state the right 
hand side is zero and the partial derivatives become total derivatives, 
Eq.   (22) becomes 

jg4 +   cot 6 2| +   4N|{ f(0) h(0) cos 6 

NH(|)n(2) -  NR(1 +  E) Z4 = 0 

or 

p- + cotö |Z + NR|4f(0)h(ö)cosö+E - (1 + E)Z4} =  0 (34) 

Similarly Eq.  (26) becomes 

(1 -  x2) |^ -  2x|J +  NR J4FU) IKx) x -r  E - <1 +  E)Z*1 =  0 (35) 
i 

Along with the simplification in the equations is a complication in 
the condition to be satisfied by the solution.   Whereas the condition to 
be satisfied by the solution of the transient equations was simply the 
initial temperature distribution, the solution of Eq.  (34) must satisfy 
Eq.  (31) and the solution for Eq.  (35) must satisfy Eq.  (32).    This   ■ 
complication in side conditions is not peculiar to this particular sys- 
tem but is a general circumstance when going from the transient equa- 
tions to the steady state equations of most systems. 

SECTION III 
SOLUTION OF THE STEADY STATE EQUATIONS 

3.1   NUMERICAL METHOD 

This section describes the numerical method used to obtain numeri- 
cal solutions to the steady state equations.   A steady state solution could 
be obtained by assuming an initial temperature distribution and obtaining 
a numerical solution of the transient equations.    However,  a more effi- 
cient method is to assume a starting value of the steady state equation, 
obtain a solution, and iterate to find the solution which fits the side condi- 
tion.    This method is described below as applied to Eq.  (35). 



AEDCTR-67-254 

Define 

S - 4* 
*   ~   dx 

(36) 

and Eq.   (35) becomes 

(1 -  x2)j$ -  2xS  + Nn UHX) IHx) x  +  E  - (L   +   K) '/A =  0 

Also define 

K(x) = f /* dx (37) 

From these equations,  we easily obtain the system of equations 

rlH         iA 

dx 
(38) 

''S             '         < °v 9   i    l*Ln  Ml    ■   F) '/4        dF'M HM v        F } (39) ,        —                     2          1       * '^    ^     'Ml   *■*■    "r     '-''   '•                 '" '*'   il\X/   X    —     I_| 
dx           1 — x        \                          |_ 

dZ _   g 
dx (40) 

A numerical solution of this system of equations could easily be obtained 
if the values of R, S, and Z at x = -1 were known. However, instead the 
following side conditions must be met.    From Eq.  (37) 

R(-l) =0 (41) 

From Eq.  (32) is obtained 

Ml) = 2 (42) 

and from Eq.   (35) is obtained the condition 

s(-D = -|NR {U - t:)[z(-i)]4 -irj (43) 

From the physical orientation,  the coldest spot on the sphere is 
at x = -1; thus, S(-l) is positive or zero and from Eq.  (43) is obtained 

Also with this assumption,  from Eq.   (32), 

Z(-l) < 1 

If Z^ and Zu are lower and upper bounds of Z(-l) then by the above in- 
equalities valid values are 

/       \'ri 

9 
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and 
zu = 1 

At the beginning of each iteration a value,  ZQ,  is defined as 

Z. -J(Z*+.Z0 
and starting values 

R(-l) = 0 

S(-D = -JNR [(1 - E)ZJ - E] 

Z(-l) = Z0 
i 

are used.    It is seen that the side conditions, Eqs.  (41) and (43), are 
satisfied.    Iteration is continued until Eq.  (42) is satisfied within a 
given tolerance, AR.    That is until 

2 - AR  < R(l) <  2 +  AR 

Each iteration determines whether ZQ is an upper or lower bound 
for Z(-l).    It is assumed that if ZQ is too low, then the solution obtained 
for Z(x) is below the correct solution and that if Z0 is too high, then the 
solution obtained is above the correct solution.    (This assumption was 
verified by numerical results.)   If at any point in a solution 

ZU) < Zt 

then it is known that Z0 is a lower bound for Z(-l).    Therefore Zjg is set 
equal to ZQ and another iteration is begun.    If at any point in a solution 

R(x) > 2 + AR 

then it is known that Z0 is an upper bound,  so Zu is set equal to Z0 and 
a new iteration is begun.   If a solution proceeds to X = 1, then R(l) is 
tested to see if 

R{1)  <  2 - AR 

If so,  then Z^ is set equal to ZQ and another iteration begun.    If not, 
then Eq.  (42) is satisfied within the given tolerance and the desired 
solution has been obtained. 

A flow chart of this method is shown in Fig. 2. 

10 
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IT -  IT +   1 

Z0  -  1/2   (Zf * %J 
SC-1)  -  1/2 H_   [(1+K)Z 4  - E] H o 
z<-i) - zo 
i - o 

C             Read 3R, E, aR ) 

ix - 2/H 

x - -1 

R(-l) - 0 
Z^ - [E/(l * K)] 
Z
U" » 
iqciT - 2 

IT - 0 

I - I + 1 
Call  STEP 

I        o 

z(x + ax) - o 

IQUIT - 3 iguiT - l 

k Print   "Hot within Toler ance"     ) C Print "within Tolerance" J 

Fig. 2   Flow Chart of Main Program 

11 
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3.2  COMPUTER PROGRAM 

A computer program was written in FORTRAN II for the SDS 920 
computer to solve the steady state equation employing the method 
described above.   The main program follows the flow chart shown in 
Fig.  2.    The subroutine STEP called by the main program is a stand- 
ard subroutine used to solve differential equations.    STEP calls an- 
other subroutine FUN which evaluates Eqs.  (38), (39),  and (40).   These 
are explained in detail below. 

3.2.1 Main Program 

The input to the program is N,  MAX,  and L defined below and 
Np,  E,  and AR.    N is the number of steps.    Since the solution is 
required for -1 < x'<l, the step size is 

Ax = 2/N 

MAX contains a limit to the number of iterations.    The fractional por- 
tion of the SDS 920 floating point number is 39 binary digits.    Since the 
numerical method halves the interval containing Z(-l) each iteration, 
the computer precision limits the method to 39 iterations.    If L is 1, 
then the solution is printed after every iteration.   If L is 2, then only the 
last solution is printed. 

The flow chart for the main program is shown in Fig.  2, and the 
listing is given in Appendix II. 

3.2.2 Subroutine STEP 

Subroutine STEP is a program of the Runge-Kutta one step method 
of solving differential equations.    This method is explained in Ref.  4. 

Given a system of differential equations 

4^ = f'U, yl, y1 y"), i = 1, 2 D (44) 
dx 

and starting values 

yJ(x0) = y0 

A one step method is an algorithm which uses the differential equations 
and the starting values to find an approximation to the solution at 
x0 +Ax 

jr'Uo + Ax) = yl 

12 
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These values can be used as new starting values to find an approxima- 
tion to the solution at x0 + 2Ax or in general,  after p steps 

y'(xp) . yj, 

where 
Xp  =  x0  +  p Ax 

The smaller the step-size, Ax, is the better the approximation be- 
comes.    The accuracy is limited only by the round off error which 
depends on the precision of the computer. 

Subroutine STEP is called by the statement 

CALL STEP (N,  X, Y,  DX) 

where Y is dimensioned Y(25). N contains the number of equations and 
DX the step size. Suppose p steps have been taken. Then, when STEP 
is called, X contains Xp and Y contains yp, with i = 1,  2,  ... n.    On 

return,  X contains xp+j and Y contains y_f j,  with i = 2,   ...  n.    STEP 
calls on a subroutine FUN to evaluate Eq.  (44). 

The listing of STEP is given in Appendix II. 

3.2.3  Subroutine FUN 

In the present case, subroutine FUN was written to evaluate Eqs. 
(38), (39),  and (40) which correspond to Eq.  (44) for this problem.   It 
is seen that Eq.  (39) is singular at x = ±1.    To avoid this difficulty 
ifx<-l + 0.1 Ax, then it is assumed that 

1 - x2 = 1  - x\ 

where xj = -1 + 0. 1 Ax.    If x > 1 - 0. lAx, then the above approximation 
is again used only this time xj_ = 1 - 0. lAx. 

The flow chart of FUN is shown in Fig. 3, and the listing is given 
in Appendix II. 

SECTION IV 
RESULTS AND DISCUSSION 

The computer program described above was used to obtain solu- 
tions of Eq.  (35) for various values of N^ and E.      The convergence 

13 
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I,-  1  -  0.1   41 

H =  1 H - 0 

dH _  z4 
dx 

—    ] 2xS + NR  [(1 + E)   Z4 -   4F(x)H(x)x -  E 1 \ 
dx       1 -   x 2    ' L J> 

dZ 
dx 

Fig. 3   Flow Chart of FUN 

14 
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of the iterations is illustrated in Fig. 4.    Figures 5,  6,  and 7 are 
the graphs of solutions with Np = 1,2,  and 3,  respectively,  for 
various values of E.    The solution with Np infinite can be obtained 
from Eq.   (35), where for this case,  Z4 is a linear function of x.   This 
linearity is shown in Fig.  8,  and the Z versus x relationship is shown 
in Fig.  9.   The case, Np = 0,  can arise only from infinite conductivity 
since it is assumed that b « a.    This means the sphere would be iso- 
thermal giving the solution, Z(x) = 1,  independent of E.    It is interest- 
ing to note that at x = 0. 25, the dimensionless temperature Z is very 
close to one in all cases.    The solutions show that when E > 1, the 
temperature distribution changes relatively slow as Np is changed. 
That is,  the temperature distribution is determined largely by internal 
radiation.   For E < 1, Np has a greater influence on the solutions, 
implying that conduction also is an important factor in determining the 
temperature distribution. 

If Np and E are the same for two different systems,  then the same 
equation describes both systems; thus, the temperature distribution of 
one system can be inferred from the measured temperature distribution 
of the other system.    This is the basis for thermal modeling.    The ob- 
servations made above,  on the behavior of the solutions of Eq.  (35), 
imply that for E > 1 the tolerance of duplication of Np in thermal model- 
ing can be relaxed, but when E < 1 the requirement for duplication of 
Np becomes more stringent. 

In thermal modeling it may be desired to preserve temperature, 
since the thermal properties may be a function of temperature.    For 
this case,  in addition to preserving Np and E, one must preserve T 
which is given by Eq.   (30).    Thus,  from Eqs.   (19),  (21),  and (30), 
after cancelling constants and Tm, are obtained the requirements 

ft. ■ a 
(^i - (se)„ <47> 

where the subscripts m and P refer to model and prototype.    If further- 
more,  materials and surface properties are preserved, then Eqs.  (46) 
and (47) are automatically fulfilled and from Eq.   (45) the well-known 
scaling requirement 

(f) ■ (f)„ <«> 
in r 

is obtained. 

15 
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There is, at least theoretically, a possibility of modeling without 
temperature preservation.    The preservation of IsTp requires that 

But by Eq.  (30) 

fa\    _   Uo) 
W - (£): 

(49) 

^      fo/, 

(50) 

Thus,  from Eqs.  (49) and (50) is obtained the requirement 

to. qs 

<as <u to   V 

(51) 

The preservation of E requires that 

CO» 
e.)i 

w, 
Wi 

(52) 

Given a prototype,  after a suitable choice of dimensions and selection 
of material for the model, the left-hand side of Eq.  (51) is determined. 
The choice of surface finish on the model will determine (o^m and 
(e0)m.'    It is then possible to adjust (qs)m to fulfill Eq.  (51).    Then 
(ej)m is determined by Eq.  (52).    Once the temperature distribution of 
the model is measured, the temperature of the prototype can be calcu- 
lated by Eq.  (15). 

(T)p 

(Tm) 
 m 

<Tm)_ 
(53) 

since Z is preserved by design.    Equation (30) is used to calculate T m* 

SECTION V 
SUMMARY 

The equation governing the heat transfer of a spherical shell sub- 
jected to parallel radiation was derived, conduction and radiation being 
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considered.   A numerical method was developed to solve the steady state 
equation,  and a computer program was described which employed the 
method.   Solutions of the steady state equation were graphically presented. 

The requirements for temperature preservation in thermal model- 
ing were derived.    The possibility of thermal modeling without tempera- 
ture preservation was discussed.    It was observed that for an inside 
emissivity to outside emissivity ratio greater than one, the require- 
ment for duplication of the other dimensionless ratio can be relaxed. 

REFERENCES 

1. Hsia, Han M.  and van der Bliek, Jan A.    "Internal Convection 
Effects in Thermal Models of Space Vehicles. "   AEDC-TR- 
66-257 (AD646770), February 1966. 

2. Nutt, K. W. and van der Bliek, Jan A.    "Some Aspects of Thermal 
Model Testing in Space Chambers. "   AEDC-TR-67-38 
(AD650814), April 1967. 

3. Henrici,  Peter.    Discrete Variable Methods in Ordinary Differential 
Equations.    New York, John Wiley and Sons,  Inc.,   1962. 

23 



AEDCTR-67-254 

APPENDIXES 
I. DERIVATION OF FORM-SURFACE FACTOR 
II. FORTRAN LISTING OF COMPUTER PROGRAM 
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APPENDIX I 
DERIVATION OF FORM-SURFACE FACTOR 

The fact that flux leaving any part of the interior of a sphere diffusely 
spreads uniformly over the interior of the sphere implies that the form 
factor from the area at 0 to the area at 0' 

XT dA«' 

Also, the form factor from the sphere to the area at 6' is 

ina2 
r- dA«' 

Consider flux leaving the area at 0. Fß_a' of this flux reaches 0' 
directly. The flux from any reflection leaves the sphere uniformly so 
Fg_g/ of the reflected flux reaches 0'. 

Of the flux leaving 8, the flux eventually striking 0' is, by adding 

G0-0' = Fe-6' + Pi Fs-0' + p] Fs-0' + .  • .  . 

R 
dA«' 

4na2 (I -Pi) 

or from Eq.  (11) this becomes 

G0_0' =   sin HM1 

This is the fraction of the flux leaving the area at 0 which eventually 
strikes the area at 6' and is called the form-surface factor. 
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APPENDIX II 
FORTRAN LISTING OF COMPUTER PROGRAM 

■              1      C   5027      RADIATING   SPHERE      D.C   T8DD      1-12-67 
-               2                       DIMENSION   Kl1001.21 100).7FI 1001.Rf 1001.SI 1001,QIC 1001«Vi3]«0Ufl 
-               3                       COMMON   D.E.DX.7FO.DS0 
•         .   A     C 
-             5     C   INPUT   AND   IMTIATE 
■        6. c 
■             7                1   ACCEPT   TAPE   1001»N»MAX#L 
>             0                     IFINI2.2.3 
■ 9                2   PRINT   1004 

10           S»OP 
■ 11                 3   ACCEPT   TAPE    1002.D.E.T 
■ 12                      DX-2./N 
-           13                      XII1»-U 

14                      Rlll-O. 
- 15                      ZU-1. 
■           16                      ZL-lE/l1.♦£)]*•.25 
- 17                   ieuiT-2 
"    . i»              lf"0     ..._        ... 
- 19     C 

20     C   START   OF   ITERATION 
21     C 

.   -     _.  22                4   t?"IT*l^ 
■ 23                     Z0-.5*[ZU*ZLJ 
■ 24                   Sin«.5*B*lll.*El«IQ*«4-EL 
■ 25                     Ztll-ZO 
»           26                      U — 1. 
■            27                        Vlll-O. 
-           26                      V121-S11I 
■          29                     VI31-Z0 
-            30                       CALL   FuNlU.V.DUM) 
■          31                     ZFUJ-ZFO 
-          32                    DSIM-DSO 
■          33     C  FIND   SOLUTION 
■34                     DO   5      I-l.N 
-          35                    CALL   STEP13.U.V.DX1 
■          36                     XIU1I-U 
■          37                     ZIU11-VI3I 
»          36                     ZFII*1)-ZF0 
>          39                     Rl1*1 1 -V t 1 1 
■          40                     SI1+11-V12) 
>           41                      DSl I *1]-DSO 
-           42                      IFIV131-ZL15C.50.6C 
-           43              60   C-2.-VU1 
■           44                      IFIT+CJ51.51.5 
■ 45                5   CONTINUE 
■ 46     C 
■          47     C   TEST   *0   SEE   IF   THIS   (S   LAST   ITERATION 
-          46     C 
•          49                     IF(T-CI50.6,6 
■          50               6   lfiUIT-3 
-          51                     SO   TO   10 
>          52             50   ZL'"ZO 
■ 53                    CO   TO   52 
■ 54          51  zg-zo 
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  •    55 
■    56 

57 

52 211+21-0 
7 IF if-AX-me.e.9 
6 I6U1T-1 

■ 58 
■ 59 

CO TO 10 
9 CO TOU0»4|,U          _. .      

C 
C START OUTPUT 

■    60 
_ -    61 

62 
-    63 

c 
10 PRINT 1000 

>    64 
■    65_ 

PRINT 1005 
PRINT 1003,C.E»DX.T.ZL.ZU 

-    66 
■    67 

PRINT 1006.IT 
60 T0U1.11.121.IQUIT 

>    66 
-    69 

11 PRINT 1006 
GO TO 13 

»    70 
■    71 

12 PRINT 1007 
13 PRINT 1009 

>    72 
■    73 

PRINT 1003«(XI I]. I-l.N»l1 
PRINT 1010 

a    74 
■    75 

PRINT 1003.m I ). I-l.N+i 1 
PRINT 1011 

>    76 
■    77 

PRINT 1C03.1ZM I I.I-l.N+I 1 
PRINT 1012 

■    76 
-  _ _79 

PRINT 1003.IRI!)»I»1.N*11 
_.    PRINT. 1011... _._   .   .         ..... 

-   ao 
■   ei 

PRINT 1C03.ISI I l.l-l.NMl 
PRINT 1014 

- 62 
- 63 

PRINT 1003.IDSIIl.I-l.N4ll 
GO T011.4.11.1GUIT 

■    64 
-    85 

1000 FORMATlSlDiC. TOOD  50271) 
1001 F0RMAH4012L 

-    66 
67 

1002 F0RMAT16E12.0) 
1003 FORMAU1P10E12.41 

■    66 
-    69 

1004 FORMATI 1H1) 
1005 FORMAT(1H04X2HNR1OX1HE11X2HDX1OX1HT11X2HZL10X2HZU/) 

-    90 
■    91 

1006 FORMATISOITERATIONS 13) 
1507 FORJiATOOHJTHLN TOLERANCESJ     . 

-    92 
■    93 

1006 FORMATCSONOT WITHIN TOLERANCES! 
1009 FORMATCSOXS/1 

- 94 
- 95 

1010 FORMATISOZS/J 
1011 FORMATISOFOURTH POWERS/I 

>    96 
-    «7 

1012 FORMATISOINTEGRAL OF FOURTH POWERS/) 
1013 FORMATISOFIRST DERIVATIVES/) 

-    96   1014 FORMATISOSECOND DERIVATIVES/! 
gOMMSB9ALLOCATIBND 

77776 D         77774 E         77772 DX        77770 ZFO 
77766 DSO 

PROGRAM ALLOCATION 

00004 
_5L444 

X         00314 Z         00624 ZF        CU34 R 
S         01754 DS        02264 V         02272 DUM 

02300 
02304 

N         02301 MAX       02302 L         02303 IOUIT 
IT        02305 I         02306 T         02310 ZU 

02312 IL - .    02314 ZQ        02316 U         C2320 C 
SUBpR0GRAMS RETIRED 

FO 
THE FND 

STEP 
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1  C ONE SfEP BY RUNGE-KUTTA  D.C. T8DD  1-12-67 
2 
3 
A 

5 
6 
7 
a 
9 

10 
li 
12 
13 
14 
15 
16 
17 
IS 
19 
20 
21 
22 
23 
24 

SUBROUTINE STEPtN.X.Y.DX) 
DIMENSION Y1251.DI25I.Y01251.F125J 
CALL FUMX.Y.D) 
DO 1 I-l.N 
YOt I 1-YIII 
F»I)-CI I) 
Yll J-YOII I*.5*DX«DIIJ 
X"X*.5*DX 
CALL FUMX.Y.D) 
DO 2 I-l.N 
Ft l]-F[II*2.«DII) 
YII I-YOIl)*.5*DX«DIIl 
CALL FUMX.Y.D] 
DO 3 I-l.N 
F*Il-FII )*2.*DtI 1 
YIII-YOIIJ*DX*DII) 
X"X*»5*DX 
CALL FUMX.Y.D) 
DO 4 I-l.N 
F|I )-.166666666667«IFI |I«DI|II 
YHJ-VOI I J*EX*F(I] 
RETURN 
END 

PROGRAM ALLOCATION 

DU'MY Y 
00345 I 
DU*MY DX 

OO017 D 
DUMMY N 

00101 YO 
00246 STEP 

00163 F 
DUMMY X 

SUBPHOCRAMS REQUiREO 
FUN 

THE FND 
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•   1 
2 

C DERIVATIVES FOR THE RADIATING EQUATIONS  O.C. TBDD  1-12-67 
SUBROUTINE FUNIX.Y,V1 

•     3 
4 

DIMENSION YI3J.VI3] 
COMMON D.EiDX.ZF.DS 

• 5 
• 6 

Xt«-1.*|1*DX 
IFIX1-X 11*3.3 

■ 7 
■ ö 

1 
2 

IFIXI2.2,4 
xt-x 

■     9 
•    10 

3 H"0. 
CO TO 6 

>    11 
12 

4 H-l. 
Xi-1.-.»*DX 

•    13 
14 5 

IFIX1-X16,6.5 
Xi«X 

•    15 
16 

6 ZF-Y(3}**4 
Vlll«ZF 

17 
16 

DS-I2.«X*YI2J*D*Ul.*EJ«ZF-4.*FtXJ*H*X-E]|/tl.-Xl*XU 
VI21-DS 

•    19 
20 

VI31-YI2] 
RETURN 

21 END 

COMMON ALLOCATION 

77776 D         77774 E 77772 DX 77770 ZF 
77766 DS 

PROGRAM ALLOCATION 

DUMMY Y         DUMMY V 
DUMMY X           Q0013 H 

00007 FUN 00011 XI 

SUBPROGRAMS REQUIRED 

F 

THE END 

1 
2 

FUNCTION 
F*l. 

FIX! 

-     3 
■     4 

RETURN 
END 

PROGRAM ALLOCATION 

00002 
THE fND 

F 
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